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Abstract: In this paper, a new MUSIC algorithm for
direction of arrival (DOA) estimation is developed, based
on the multi-stage wiener filter (MSWF). Unlike the
classical MUSIC algorithm, the proposed method only
involves the forward recursions of the MSWF to find
the noise subspace even in the case of coherent signals,
dose not require the estimate of an array covariance
matrix or its eigendecomposition. Therefore, the proposed
method is computationally advantageous over the classical
MUSIC algorithm that resorts to computing the sample
covariance matrix and its eigenvectors. The performance
of the proposed method is demonstrated by numerical results.
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I. INTRODUCTION

It is interesting to estimate the direction of arrival (DOA)
parameters of signals in the noisy background in such areas
as communication, radar, sonar and geophysical seismol-
ogy [1] [2]. The well known subspace based methods that
dependent on the decomposition of the observation space
into signal subspace and noise subspace, can provide high-
resolution DOA estimations with good estimation accuracy.
However, the classical subspace based methods such as
the MUSIC-type [3] methods, involve the estimate of the
covariance matrix and its eigendecomposition. As a result,
the classical subspace based methods are rather computa-
tionally intensive, especially for the case where the model
orders in these matrices are large. Recently, the methods
called reduced-order correlation kernel estimation technique
(ROCKET) [4] and ROCK MUSIC algorithm [5] were pre-
sented to high-resolution spectral estimation which dose not
need the inverse of the covariance matrix. Nevertheless, the
ROCK MUSIC technique still needs the forward and back-
ward recursions of the multi-stage wiener filter (MSWF) [6],
which increase the computational complexity of the algo-
rithm. Moreover, the ROCKET algorithm involves complex
matrix-matrix products to find the reduced-rank data matrix
and the reduced-rank autoregressive (AR) weight vector. This

implies that additionally computational cost is included.
In this paper, we present a low computational complexity

MUSIC method for DOA estimation, based on the MSWF.
Unlike the ROCK MUSIC [5] technique, the proposed method
merely involves the forward recursions of the MSWF to
extract the noise subspace even in the case of coherent signals,
does not need the backward recursion of the MSWF or any
complex matrix-matrix products, thereby further reducing the
computational complexity of the algorithm. Compared to the
classical eigendecomposition based methods, the proposed
method avoids the estimate of the covariance matrix and
its eigendecomposition. Thus, the presented method is com-
putationally efficient. Basically, the proposed method works
similarly to the classical MUSIC method but finds the noise
subspace in a more computationally efficient way, which is
the distinguishing feature of the proposed method.

II. PROBLEM FORMULATION

A. Data Model

Let us consider a uniform linear array (ULA) composed of
M isotropic sensors. Assume that P narrow-band signals im-
pinge upon the ULA from distinct directions θ1, θ2, · · · , θP .
The M × 1 output vector of the array, which is corrupted by
additive noise, at the kth snapshot can be expressed as

x(k) =
P∑

i=1

a(θi)si(k)+n(k) k = 0, · · · , N−1 (1)

where si(k) is the scalar complex waveform referred to as the
ith signal, n(k) ∈ CM×1 is the complex noise vector, N and
P denote the number of snapshots and the number of signals,
respectively, a(θi) is the steering vector of the array toward
direction θi and takes the following form

a(θi) =
1√
M

[
1, ejϕi , · · · , ej(M−1)ϕi

]T

(2)

where ϕi = 2πd
λ sin θi in which θi ∈ (−π/2, π/2), d and

λ are inter-element spacing and the wavelength, respectively,
and the superscript (·)T denotes the transpose operator.
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In matrix form, Equation (1) becomes

x(k) = A(θ)s(k) + n(k) k = 0, 1, · · · , N−1 (3)

where

A(θ) = [a(θ1),a(θ2), · · · ,a(θP )] (4)

s(k) = [s1(k), s2(k), · · · , sP (k)]T (5)

are the M ×P steering matrix and the P × 1 complex signal
vector, respectively. Throughout the paper we assume that
M > P . Furthermore, the background noise uncorrelated with
the signals is modeled as a stationary, spatially-temporally
white, zero-mean, Gaussian complex random process.

B. Multi-Stage Wiener Filter

It is well known that the wiener filter (WF) wwf ∈ CM×1

can be used to estimate the desired signal d(k) ∈ C from the
observation data x(k) in the minimum mean square error
(MMSE) sense. Thereby, we get the following design criterion

wwf = arg min
w

E{|d(k) − wHx(k)|2} (6)

where d̂(k) = wHx(k) represents the estimate of the desired
signal d(k), and w ∈ CM×1 is the linear filter. Solving (6)
leads to the Wiener-Hopf equation

Rxwwf = rxd (7)

where Rx = E[x(k)xH(k)], rxd = E[x(k)d∗(k)]. The
classical wiener filter, i.e., wwf = R−1

x rxd, is compu-
tationally intensive for large M since the inverse of the
covariance matrix is involved. The MSWF developed by
Goldstein et al [6] is to find an approximate solution to the
Wiener-Hopf equation which does not need the inverse or
eigendecomposition of the covariance matrix. In contrast to
the principal components (PC) method [7] and the cross-
spectral (CS) metric [8], the MSWF requires much lower
computational cost, offers faster convergence and can work in
the low-sample support operational environment where other
adaptive algorithms fail. The MSWF based on the data-level
lattice structure [9] is given as follows:

• Initialization: d0(k) and x0(k) = x(k).
• Forward Recursion: For i = 1, 2, · · · ,D:

hi = E[x(k)i−1d
∗
i−1(k)]/‖E[x(k)i−1d

∗
i−1(k)]‖2;

di(k) = hH
i xi−1(k);

xi(k) = xi−1(k) − hidi(k).
• Backward Recursion: For i = D,D − 1, · · · , 1 with

eD(k) = dD(k):
wi = E[di−1(k)e∗i (k)]/E[|ei(k)|2];
ei−1(k) = di−1(k) − w∗

i ei(k).
The corresponding block diagram can be found in Fig. 1.
In the algorithm above, the reference signal d0(k) can be ac-
quired from the training data or the spreading codes of users in
blind mode. The pre-filtering matrix TM = [h1,h2, . . . ,hM ]
is obtained by performing M(D = M) forward recursions of
the MSWF.
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Fig. 1. Lattice structure of the MSWF. The dashed line denotes the basic
box for each additional stage.

III. A NOVEL MUSIC ESTIMATOR

It is shown in [10] that all the matched filters hi, i =
1, 2, · · · ,D(D ≤ P ) are contained in the column space
of A(θ). It follows that the orthogonal matched filters
h1,h2, · · · ,hP span the signal subspace, namely

span {h1,h2, · · · ,hP } = col {A(θ)} . (8)

Since all the matched filters h1,h2, · · · ,hM are orthogonal
for the special choice of the blocking matrix Bi = I−hihH

i ,
the matched filters after the P stage of the MSWF are
orthogonal to the signal subspace, i.e., hi ⊥ col {A(θ)} for
i = P +1, P +2, · · · ,M . Therefore, the last M −P matched
filters span the orthogonal complement of the signal subspace,
namely the noise subspace

span {hP+1,hP+2, · · · ,hM} = null {A(θ)} . (9)

Equation (9) indicates that the noise subspace can be
readily obtained by performing the forward recursions of the
MSWF, and thus the MUSIC estimator based on the noise
subspace can be exploited to produce peaks at the DOA
locations. However, for coherent signals, the noise subspace
estimated by this method is incorrect anymore. That is to say,
the last M − P matched filters do not span a noise subspace
for the case where the signals are coherent. As a result, we
must resort to the smoothing techniques to decorrelate the
coherent signals.

For the spatial smoothing technique [11], an array consist-
ing of M sensors is subdivided into L subarrays. Thereby,
the number of elements per subarray is ML = M − L + 1.
For l = 1, 2, · · · , L, let the ML ×M matrix Jl be a selection
matrix, which takes the following form

Jl =
[

0ML×(l−1)

... IML×ML

... 0ML×(M−l−ML+1)

]
.

(10)
The selection matrix Jl is exploited to select part
of the M × N observation data matrix X0 =
[x0(0),x0(1), · · · ,x0(N − 1)], which associates with
the lth subarray. Hence, the spatially smoothed ML × LN
data matrix X̄0 is constructed by

X̄0 = [J1X0 J2X0 · · · JLX0] ∈ CML×LN . (11)



Similarly to the spatially smoothed data matrix X̄0, the
”spatially smoothed” training signal vector should have the
following form

d̄0 = [d0; d0; · · · ; d0︸ ︷︷ ︸
L

] ∈ CLN×1 (12)

where d0 = [d0(0), d0(1), · · · , d0(N − 1)]T ∈ CN×1. Thus,
the ith spatially smoothed matched filter of the MSWF is
given by

h̄i =
r̄xi−1di−1

‖r̄xi−1di−1‖2
=

X̄i−1d∗
i−1

‖X̄i−1d∗
i−1‖2

. (13)

Hence, the low-complexity MUSIC algorithm for direction
finding is summed as follows:

Step1: Perform the spatial smoothing technique to the M×
N data matrix X0, obtain the spatially smoothed
ML × NL data matrix X̄0.

Step2: Construct the spatially smoothed training sequence
vector d̄0 by the way shown in (12).

Step3: Perform the following set of recursions
For i = 1, 2, · · · ,ML:

h̄i = X̄i−1d̄∗
i−1/‖X̄i−1d̄∗

i−1‖2,
d̄i = h̄H

i X̄i−1,
X̄i = X̄i−1 − h̄id̄i.

Obtain the noise subspace N̄ML−P =[
h̄P+1, h̄P+2, · · · , h̄ML

]
.

Step4: Exploit the MUSIC estimator PMUSIC(θ) =
1

aH
ML

(θ)NML−P NH
ML−P

aML
(θ)

to produce peaks

at the DOA locations, where aML
(θ) =

1√
ML

[1, ejϕi , · · · , ej(ML−1)ϕi ]T . Alternatively, the
DOAs can also be estimated by the root-MUSIC
algorithm: finding the P roots, say ẑ1,ẑ2,· · · ,ẑP

that have the largest magnitude, of the root-MUSIC
polynomial D(z) = zML−1pT(z−1)N̄ML−PN̄H

ML−Pp(z)
where p(z) =

[
1, z. · · · , zML−1

]T
, yields the

DOA estimates as θ̂i = arcsin
(

λ arg(ẑi)
2πd

)
in which

arg (ẑi) denotes the phase angle of the complex
number ẑi.

Remark: Notice that the low-complexity MUSIC algorithm
given above avoids the formation of blocking matrices,
and all the operations only involve complex matrix-vector
products, thereby requiring the computational complexity of
O(MLNL) for each matched filter hi, i ∈ {1, 2, · · · ,ML}.
To fulfil the estimation of the noise subspace, ML stages
of the MSWF are needed. Thus, the computational cost of
the proposed method is only O(M2

LNL) flops. However,
the classical MUSIC method includes the estimate of the
spatially smoothed covariance matrix and its eigendecompo-
sition, which require O(M2

LNL + M3
L) flops. Therefore, the

proposed method is computationally attractive.

IV. NUMERICAL RESULTS

We consider the case where there are three signals im-
pinging upon the ULA consisting of 14 sensors from the
same signal source. The first is a direct-path signal and the
others refer to the scaled and delayed replicas of the first
signal that represent the multipaths or the ”smart” jammers.
The propagation constants are {1,−0.8 + j0.3, 0.4 − j0.6}.
We assume that the true DOAs are {−10o, 0o, 5o} and the
number of signals is known a priori. The background noise
is a stationary Gaussian white random process.

The spatial spectra of the proposed method and the classical
MUSIC algorithm are shown in Fig. 2, where the number of
snapshots is 256 and the signal to noise ratio (SNR) is 18dB.
SNR is defined as 10 log(σ2

s/σ2
n), where σ2

s is the power
of each signal in single sensor. It can be observed that the
proposed estimator works very well like the classical MUSIC
estimator. Fig. 3 shows the root-mean-square error (RMSE) of
the estimated DOA for the first signal versus SNR, based on
500 Monte Carlo runs. The number of snapshots is equal to
128. It is shown in Fig. 3 that the proposed MUSIC estimator
clearly outperforms the classical SS-MUSIC algorithm when
SNR≤ 18dB, and provides the same estimation accuracy
as the latter when SNR> 18dB. As SNR increases, the
RMSE’s of the two methods approach to the Cramér-Rao
bound (CRB). The RMSE’s of the estimated DOA of the first
signal for the two methods versus the number of snapshots
are demonstrated in Fig. 4, where SNR=18dB. It can be
observed that the proposed method surpasses the classical
MUSIC estimator over the range of the number of snapshots
that we simulated.

V. CONCLUSION

We have presented a low-complexity MUSIC algorithm for
DOA estimation in this paper. The proposed method only
requires O(M2

LNL) flops that are equivalent to the com-
putational complexity of estimating the spatially smoothed
covariance matrix. In contrast to the classical MUSIC method
which involves the estimate of the spatially smoothed covari-
ance matrix and its eigendecomposition, thereby requiring the
computational cost of O(M2

LNL+M3
L), the proposed method

is more computationally efficient. Numerical results indicate
that the proposed method outperforms the classical MUSIC
method in estimation accuracy.
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